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The existing audio retrieval systems fall into one of two categories: single-domain systems
that can accept data of only a single type (e.g. speech) or multiple-domain systems
that offer content-based retrieval for multiple types of audio data. Since a single-domain
system has limited applications, a multiple-domain system will be more useful. However,
different types of audio data will have different properties, this will make a multiple-
domain system harder to be developed. If we can classify audio information in advance,
the above problems can be solved. In this paper, we will propose a real-time classification
method to classify audio signals into several basic audio types such as pure speech, music,
song, speech with music background, and speech with environmental noise background.

In order to make the proposed method robust for a variety of audio sources, we use
Bayesian decision function for multivariable Gaussian distribution instead of manually
adjusting a threshold for each discriminator. The proposed approach can be applied to
content-based audio/video retrieval. In the experiment, the efficiency and effectiveness
of this method are shown by an accuracy rate of more than 96% for general audio data
classification.

Keywords: Audio classification; spectrogram; Bayesian decision function; multivariable
Gaussian distribution.

1. Introduction

Audio classification1,3–7,9,11–17 has many applications in professional media pro-

duction, audio archive management, commercial music usage, content-based

audio/video retrieval, and so on. Several audio classification schemes have been
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proposed. These methods tend to roughly divide audio signals into two major

distinct categories: speech and music. Scherier and Slaney13 provided such a dis-

criminator. Based on thirteen features including cepstral coefficients, four multidi-

mensional classification frameworks are compared to achieve better performance.

The approach presented by Saunders12 takes a simple feature space and is per-

formed by exploiting the distribution of zero-crossing rate. In general, speech

and music have quite different properties in both time and frequency domains.

Thus, it is not hard to reach a relatively high level of discrimination accuracy.

However, two-type classification for audio data is not enough in many applica-

tions, such as content-based video retrieval.1 Recently, video retrieval has become

an important research topic. To raise the retrieval speed and precision, a video

is usually segmented into several scenes.1,17 In general, neighboring scenes will

have different types of audio data. Thus, if we can develop a method to clas-

sify audio data, the classified results can be used to assist scene segmentation.

Different kinds of videos will contain different types of audio data. For example,

in documentaries, commercials or news report, we can usually find the following

audio types: speech, music, speech with musical or environmental noise background

and song.

Wyse and Smoliar15 presented a method to classify audio signals into “music”,

“speech”, and “others”. The method was developed for the parsing of news stories.

In Ref. 5, audio signals are classified into speech, silence, laughter, and non-speech

sounds for the purpose of segmenting discussion recordings in meetings. The above-

mentioned approaches are developed for specific scenarios, only some special audio

types are considered. The research in Refs. 6, 16 and 17 has taken more general types

of audio data into account. In Ref. 6, 143 features are first studied for their discrim-

ination capability. Then, the cepstral-based features such as Mel-frequency cepstral

coefficients (MFCC), linear prediction coefficients (LPC), etc. are selected to classify

audio signals. The authors concluded that in many cases, the selection of features

is actually more critical to the classification performance. More than 90% accuracy

rate is reported. Zhang and Kuo17 first extracted some audio features including the

short-time fundamental frequency and the spectral tracks by detecting the peaks

from the spectrum. The spectrum is generated by autoregressive model (AR model)

coefficients, which are estimated from the autocorrelation of audio signals. Then, the

rule-based procedure, which uses many threshold values, is applied to classify audio

signals into speech, music, song, speech with music background, etc. More than 90%

accuracy rate is reported. The method is time-consuming due to the computation of

autocorrelation function. Besides, many thresholds used in this approach are empir-

ical, they are improper when the source of audio signals is changed. To avoid these

disadvantages, in this paper, we will provide a method with only few thresholds used

to classify audio data into five general categories: pure speech, music, song, speech

with music background and speech with environmental noise background. These

categories are the basic sets needed in the content analysis of audiovisual data.
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The proposed method consists of three stages: feature extraction, the coarse-

level classification and the fine-level classification. Based on statistical analysis,

four effective audio features are first extracted to ensure the feasibility of real-time

processing. They are the energy distribution model, variance and the third moment

associated with the horizontal profile of the spectrogram and the variance of the

differences of temporal intervals. Then, the coarse-level audio classification based

on the first feature is conducted to divide audio signals into two categories: single-

type and hybrid-type, i.e. with or without background components. Finally, each

category is further divided into finer subclass through Bayesian decision function.2

The single-type sounds are classified into speech and music; the hybrid-type sounds

are classified into speech with environmental noise background, speech with music

background and song. The system diagram is shown in Fig. 1. Experimental results

show that the proposed method achieves an accuracy rate of more than 96% in

audio classification.

The paper is organized as follows. In Sec. 2, the proposed method will be

described. Experimental results and discussion will be presented in Sec. 3. Finally,

the conclusions will be given in Sec. 4.
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Fig. 1. Block diagram of the proposed system, where “MB” and “NB” are the abbrevations for
“music background” and “noise background”, respectively.
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2. The Proposed System

In this paper, an input audio clip is transformed to a spectrogram that is the time-

varying spectrum of a signal and in a three-dimensional (time, frequency, intensity)

space known as a time-frequency distribution.10 To construct a spectrogram, the

Short Time Fourier Transform (STFT) is applied. As for STFT, the input audio

signal is first divided into several frames. Each frame contains consecutive n audio

signal samples, and two neighboring frames will overlap 50%. Then, the Fourier

transform is applied to each frame tapered with a window function in succession.

Let s(t) denote the audio signal and STFT (τ, ω) be the result of STFT, that is,

STFT (τ, ω) =

n−1
∑

t=0

s
(

t +
τ

2
n
)

r∗(t)e−jωt, (1)

where r∗(t) is the window function, τ stands for the frame number, n is set to 512

and ω is the frequency parameter. Then, the spectrogram, S(τ, ω), is the energy

distribution associated with the Short Time Fourier Transform, that is,

S(τ, ω) = 10 log10

(

|STFT (τ, ω)|

M

)2

,

where

M = max
τ,ω

|STFT (τ, ω)|. (2)

Traditionally, a spectrogram is displayed with gray levels, where the darkness of

a given point is proportional to its energy. The vertical axis in a spectrogram repre-

sents frequency and the horizontal axis represents time (or frame). Figures 2(a)–2(e)

show five examples of the spectrograms of music, speech with music background,

song, pure speech and speech with environmental noise background, respectively.

The proposed audio classification method is based on the spectrogram and con-

sists of three phases: feature extraction, the coarse-level classification and the fine-

level classification. First, four effective audio features are extracted. Then, based

on the first feature, the coarse-level audio classification is conducted to classify

audio signals into two categories: single-type and hybrid-type. Finally, based on the

remaining features, each category is further divided into finer subclasses. The single-

type sounds are classified into pure speech and music. The hybrid-type sounds are

classified into song, speech with environmental noise background and speech with

music background.

In the following, the proposed method will be described in details.

2.1. Feature extraction phase

Four kinds of audio features are used in the proposed method, they are energy

distribution model, variance and the third moment associated with the horizontal

profile of the spectrogram, and variance of the differences of temporal intervals

(which will be defined later). To get these features, the audio spectrogram for an
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Fig. 2. Five spectrogram examples. (a) Music. (b) Speech with music background. (c) Song.
(d) Speech. (e) Speech with environmental noise background.
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Fig. 2. (Continued )

audio signal is constructed first. Based on the spectrogram, these four features are

extracted and described as follows.

2.1.1. The energy distribution model

For the purpose of characterizing single-type and hybrid-type sounds, i.e. with or

without background components, the energy distribution model is proposed. The

histogram of a spectrogram is also called the energy distribution of the correspond-

ing audio signal. In our experiments, we found that there are two kinds of energy

distribution models: unimodel and bimodel [see Figs. 3(a) and 3(b)], in audio sig-

nals. In Fig. 3, the horizontal axis represents the spectrogram energy.

For a hybrid-type sound, its energy distribution model is bimodel; otherwise, it

is unimodel. Thus, to discriminate single-type sounds from hybrid-type sounds, we

only need to detect the type of the corresponding energy distribution model. To

reach this, for an audio signal, the histogram of its corresponding spectrogram, h(i),

is established first. Then, the mean µ and the variance σ2 of h(i) are calculated.

In general, if µ approaches to the position of the highest peak in h, h(i) will be a

unimodel [see Fig. 3(a)]. On the other hand, for a bimodel, dividing h(i) into two

parts from µ, each part will be unimodel [see Fig. 3(b)]. Thus, if we find a local
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Fig. 3. Two examples of the energy distribution models. (a) Unimodel [the histogram of the
energy distribution of Fig. 2(a)]. (b) Bimodel [the histogram of the energy distribution of Fig. 2(c)].

peak in each part, these two peaks will not be close. Based on these phenomena, a

model decision algorithm is provided and described as follows.

Algorithm 1. Model decision Algorithm

Input : The spectrogram S(τ, ω) of an audio signal.

Output : The model type, T , and two parameters T1, T2.

Step 1. Establish the histogram, h(i), i = 0, . . . , 255, of S(τ, ω).

Step 2. Compute the mean µ and the variance σ2 of h(i).

Step 3. Find the position p of the highest peak in h(i).

Step 4. If |p − µ| ≤ 5, T = unimodel, go to Step 9.

Else

Use µ to set the search range <p as follows:

<p =

{

(µ, µ + σ], if p < µ

[µ − σ, µ), if p > µ
.

End if.

Step 5. Find the position q of the highest peak h(q)within <p.

Step 6. Find the position v of the lowest valley h(v) in the range between p

and q.

Step 7. Set dst = |p − q|.

Step 8. Set T = bimodel if the following two conditions are satisfied

Condition 1: dst ≥ σ
2
.

Condition 2: h(q) ≥ 1

2
h(p) and h(q) ≥ 6

5
h(v).

Else T = unimodel.

Step 9. Output T and assign µ to T1, µ + σ to T2.

End of Algorithm 1.
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Through the model decision algorithm described above, the model type for an

audio signal can be determined. Note that in the algorithm, except the model

type extracted, two parameters, T1 and T2, which will be used later, will be also

obtained.

2.1.2. The horizontal profile analysis

In this section, we will base on two facts to discriminate an audio clip with or

without music components. One fact is that if an audio clip contains musical com-

ponents, we can find many horizontal long-line like tracks [see Figs. 2(a)–2(c)] in

its spectrogram. The other fact is that if an audio clip does not contain musical

components, most energy in the spectrogram of each frame will concentrate on a

certain frequency interval [see Figs. 2(d)–2(e)]. Based on these two facts, two novel

features will be derived and used to distinguish music from speech.

To obtain these features, the horizontal profile of the audio spectrogram is con-

structed first. Note that the horizontal profile [see Figs. 4(a)–4(e)] is defined as the

projection of the spectrogram of the audio clip on the vertical axis. Based on the

first fact, we can find that for an audio clip with musical components, there will be

many peaks in its horizontal profile [see Figs. 4(a)–4(c)], and the location difference

between two adjacent peaks is small and near constant. On the other hand, based

on the second fact, we can see that for an audio clip without musical components,

only few peaks can be found in its horizontal profile [see Figs. 4(d)–4(e)], and the

location difference between any two successive peaks is larger and variant. Based

on the above description, for an audio clip, all peaks, Pi, in its horizontal profile are

first extracted; and the location difference, dPi, between any two successive peaks

is evaluated. Note that in order to avoid the influence of noise in high frequency,

the frequency components above Fs/4 are discarded, where Fs is the sampling rate.

Then the variance, vdPi
, and the third moment, mdPi

, of dPis are taken as the

second and third features and used to discriminate audio clips with or without

music components. Note that variance and the third moment stand for the spread

and skewness of the location differences of all two successive peaks in the horizontal

profile, respectively. For an audio clip with musical components, variance and the

third moment will be small; however, for an audio clip without musical component,

these two features will be larger.

2.1.3. The temporal intervals

Up to now, we have provided three features. By processing the audio signals through

these features, all audio signals can be classified successfully except the simultane-

ous speech and music category, which contains two kinds of signals: speech with

music background and song. To discriminate these, a new feature is provided. One

important characteristic to distinguish them is the duration of the music-voice.
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Fig. 4. Five examples of the horizontal profiles. (a–e) are the horizontal profiles of Figs. 2(a)–2(e),
respectively.
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The duration of music-voice is defined as the duration of music appearing with

human voice simultaneously. That is, two successive durations of music-voice are

separated by the duration of a pure music component. For speech with music back-

ground, in order to emphasize the message of the talker, the signal energy con-

tribution of voice is greater than the contribution of the music. In general, it is

strongly speech-like, the difference between any two adjacent duration of music-

voice is variable [see Fig. 5(c)]. Conversely, song is usually melodic and rhythmic,

the difference between any two adjacent durations of music-voice in song is small

and near constant [see Fig. 5(a)].

By observing the spectrogram in different frequency bands, we can see that

music-voice (i.e. speech and music appear simultaneously) has more energy in the

neighboring middle frequency bands, while music without voice will possess more

energy in the lower frequency band. These phenomena are shown in Fig. 5.

Based on these phenomena, the property of the duration of each continuous

part of the simultaneous speech and music in a sound is used to discriminate the

speech with music background from song. First, a novel feature associated with the

temporal interval is derived. This interval is defined as the duration of a continuous

part of music-voice of a sound. Note that the signal between two adjacent temporal

intervals will be music without human voice. Based on the phenomenon of the

energy distribution in different frequency bands described previously, an algorithm

will be proposed to determine the continuous music-voice parts in a sound. Note

that some frequency noises usually exist in an audio clip, i.e. these noises will

contribute to those frequencies with lower energy in spectrogram. In order to avoid

the influence of frequency noise, a filtering procedure is applied in advance to get

rid of those with lower energy. The proposed filtering procedure is provided and

described as follows.

Filtering Procedure:

(1) Filter out the higher frequency components with lower energy :

For the spectrogram of each frame τ , S(τ, ω), find the highest frequency ωh

with S(τ, ωh) > T2. Set
∧

S(τ, ω) = 0, ∀ ω > ωh.

(2) Filter other components :

For ω < ωh,
∧

S(τ, ω) =

{

0, if S(τ, ω) < T1

S(τ, ω), otherwise.

Figures 5(b) and 5(d) show the filtered spectrograms of Figs. 5(a) and 5(c), respec-

tively. In what follows, we will be interested in how to determine the temporal

intervals.

Note that an audio clip of the simultaneous speech and music category contains

several temporal intervals and some short periods of background music, each will

separate two temporal intervals [see Fig. 5(a)]. To extract temporal intervals, the

entire frequency band [0, Fs/2] is first divided into two subbands of unequal width:
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(d) 

 (b) 
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Human Singing 
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Fig. 5. Two examples of the filtered spectrogram. (a) The spectrogram of song. (b) The fil-
tered spectrogram of (a). (c) The spectrogram of speech with music background. (d) The filtered
spectrogram of (c).
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distance<threshold re-merge

(a) (b)

Fig. 6. An example of the remerged process. (a) Initial temporal intervals. (b) Result after
remerged process.

[0, Fs/8] and [Fs/8, Fs/2]. Next, for each frame, evaluate the ratio of the nonzero

part in each subband to the total nonzero part. If the ratio is larger than 10%, mark

the subband. Based on the marked subbands, we can extract the temporal intervals.

First, those neighboring frames with the same marked subbands are merged to form

a group. If the higher subband (i.e. [Fs/8, Fs/2]) in a group is marked, the group

will be regarded as a part of music-voice (also called raw temporal interval). That

is, a temporal interval is a sequence of frames with higher energy in higher subband.

Since the results obtained after filtering procedure are usually sensitive to

unvoiced speech and slight breathing, a remerged process is then applied to the

raw temporal intervals. During the remerged process, two neighboring intervals are

merged if the distance between them is less than a threshold. Figure 6 shows an

example of the remerge process. Once we complete this step, we will obtain a set

of temporal intervals and the duration difference between any two successive inter-

vals is evaluated. Finally, the variance of these differences, vdt, is taken as the last

feature.

2.2. Audio classification

Since there are some similar properties among most of the five classes considered,

it is hard to find distinguishable features for all of these five classes. To treat this

problem, a hierarchical system is proposed. It will do coarse-level classification first,

then the fine-level classification is performed. To meet the aim of online classifica-

tion, features described above are computed on the fly with incoming audio data.

2.2.1. The coarse-level classification

The aim of coarse-level audio classification is to separate the five classes into two

categories such that we can find some distinguishable features in each category.

Based on the energy distribution model, audio signals can be first classified into
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two categories: single-type and hybrid-type, i.e. with or without background compo-

nents. Single-type sounds contain pure speech and music. And hybrid-type sounds

contain song, speech with environmental noise background and speech with music

background.

2.2.2. The fine-level classification

The coarse-level classification stage yields a rough classification for audio data.

To get the finer classification result, the fine-level classifier is used. Based on the

extracted feature vector X , the classifier is designed using a Bayesian approach

under the assumption that the distribution of the feature vectors in each class

wk is a multidimensional Gaussian distribution Nk(mk, Ck). The Bayesian decision

function2 for class wk, dk(X) has the form:

dk(X) = ln P (wk) −
1

2
ln |Ck| −

1

2
(X − mk)T C−1

k (X − mk), (3)

where mk and Ck are the mean vector and covariance matrix of X , and P (wk) is

a priori probability of class wk. For a piece of sound, if its feature vector X satisfies

di(X) > dj(X) for all j 6= i, it is assigned to class wi.

The fine-level classifier consists of two phases. During the first phase, we take

(vdPi
, mdPi

) as the feature vector X and apply Bayesian decision function to each of

the two coarse-level classes separately. For each audio signal of the single-type class,

we can successfully classify it as music or pure speech. And the classification is well

done without needing any further processing. For those of the hybrid-type sounds,

which may be speech with environmental noise background, speech with music

background or song, the same procedure is applied. Speech with environmental

noise background is distinguished and what is left in the first phase is the subclass

including speech with music background and song. An additional process is needed

to do further classification for the subclass. For this, the Bayesian decision function

with the feature vdt is applied. And we can successfully classify each signal in this

subclass as speech with music background or song.

3. Experimental Results

3.1. Audio database

In order to compare, we have collected a set of 700 generic audio pieces of different

types of sound according to the collection rule described in Ref. 17 as the testing

database. Care was taken to obtain a wide variation in each category, and most

clips are taken from MPEG-7 content set.8,17 For single-type sounds, there are 100

pieces of classical music played with varied instruments, 100 other music pieces

of different styles (jazz, blues, light music, etc.), and 200 clips of pure speech in

different languages (English, Chinese, Japanese, etc.). For hybrid-type sounds, there

are 200 pieces of song sung by male, female, or children, 50 clips of speech with

background music (e.g. commercials, documentaries, etc.), and 50 clips of speech
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with environmental noise (e.g. sport broadcast, news interview, etc.). These audio

clips (with duration from several seconds to no more than half minute) are stored

as 16-bit per sample with 44.1kHz sampling rate in the WAV file format.

3.2. Classification results

Tables 1 and 2 show the results of the coarse-level classification and the final classi-

fication results, respectively. From Table 2, it can be seen that the proposed classi-

fication approach for generic audio data can achieve an accuracy rate of more than

96% by using the testing database. The training is done using 50% of randomly

selected samples in each audio type, and the test is operated on the remaining 50%.

By changing training set several times and evaluating the classification rates, we

find that the performance of the system is stable and independent on the particular

test and training sets. Note that the experiments are carried out on a Pentium

II 400 PC/Windows 2000, and one twentieth of the time is required to play the

audio clip for processing an audio clip. The only computationally expensive part is

the spectrogram, and the other processing is simple by comparison (e.g. variances,

peak finding, etc.). In order to compare, we also like to cite the efficiency of the

existing system described in Ref. 17, which also includes the five audio classes con-

sidered in our method and uses similar database to ours. The authors of Ref. 17

report that less than one eighth of the time required to play the audio clip are

needed to process an audio clip. They also report that their accuracy rates are

more than 90%.

Table 1. Coarse-level classification results.

Audio Type Number Correct Rates (%)

Single-type sounds Pure speech 200 100

Pure music 200 100

Hybrid-type sounds Song 200 100

Speech with MB 50 100

Speech with NB 50 100

Table 2. Final classification results.

Audio Type Number Correct Rates (%)

Single-type sounds Pure speech 200 100

Pure music 200 97.6

Hybrid-type sounds Song 200 98.53

Speech with MB 50 96.5

Speech with NB 50 100
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4. Conclusion

In this paper, we have presented a new method for the automatic classification of

generic audio data. An accurate classification rate higher than 96% was achieved.

Two important and distinguishing features compared with previous work in the

proposed scheme are the complexity and running time. Although the proposed

scheme covers a wide range of audio types, the complexity is low due to the easy

computing of audio features, and this makes online processing possible.

Besides the general audio types such as music and speech tested in existing work,

we have taken hybrid-type sounds (speech with music background, speech with

environmental noise background and song) into account. While current existing

approaches for audio content analysis are normally developed for specific scenarios,

the proposed method is generic and model free. Thus, our method can be widely

applied to many applications.
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