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Abstract In the area of secret image sharing (SIS), most papers focused on the schemes
for threshold or some special access structures. Regarding general access structures (GAS),
few results have been found in the literature. Two SIS schemes for GAS were proposed in
2001 and 2010, both are based on qualified sets. However, one distorts the reconstructed
secret image, and some extra information is needed in both schemes. Here, we propose
three polynomial based SIS schemes for GAS. Considering either qualified or forbidden
sets, these schemes can reconstruct the secret image perfectly without any extra information
needed. Some proof and analysis on the shadow sizes of the three schemes are given to lead
us to choose the one with the smallest size. In addition, we also give some comparisons with
two existing schemes, and security issue is also addressed in conclusion.
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1 Introduction

Secret sharing (SS) safeguards the secret among a group of participants. It reduces the
individual disloyal and has the fault tolerance ability. Shamir [11] and Blakley [3] pro-
posed (k, n)-threshold secret sharing (TSS) schemes in 1979 independently. A secret s

is encoded into n parts called shadows, which would be distributed to n participants, such
that each group of k (or more) participants can recover s using their shadows, while any
group of less than k ones cannot obtain any information about s. The decoding criterion is
based on the number of participants and that is why k is called the threshold. The secret
is protected by these n participants such that any disloyal group of less than k participants
cannot recover it and a tolerance of n − k damaged shares is allowed.

However, a TSS scheme cannot handle those sharing cases that the decoding does not
depend on the number of participants. For instance, we might expect participants 1 and 2
as well as 2 and 3 can access the secret, but 1 and 3 cannot among the three participants.
A general access structure (GAS), which predefines qualif ied sets and f orbidden

sets, can describe a wider range of participants’ accessibility than the threshold one. A
scheme with GAS can be applied to more situations in practical applications and a threshold
structure is a special case of it.

Ito et al. [7] proposed a SS scheme for GAS in 1987, Benaloh and Leichter [2] proposed
another in 1988. These two schemes are simple and will be explained later. The total shadow
sizes of these two schemes are depended on the given access structure. Note that the shadow
size is the major measurement to evaluate the effectiveness of a SS-GAS scheme. We prefer
a scheme with a smaller total shadow size. Some extended researches [6, 8, 13] try to reduce
the shadow size. The shadow size in [6] and [13] can be reduced in some special cases only.
Horng’s scheme [6] is effective when the cardinality of each minimal qualified set is near
a constant, but the shadow size in the worst case is larger than that of Ito et al.’s scheme.
Tochikubo’s scheme [13] tries to merge some forbidden sets to reduce the shadow size; still,
the worse case is the same as Ito et al.’s scheme. Iwamoto et al.’s scheme [8] minimizes the
shadow size via setting conditions through integer programming. In 2013, Guo and Chang
[5] proposed a SS scheme for GASwhich is based on key-lock-pair mechanism. The number
of shadows each participant holds is twice as many as the number of participants. Note that
all the above schemes focus on sharing a secret number.

The study for sharing an image (instead of a number) is called secret image sharing

(SIS). The demand of an SIS scheme with a smaller share size is even more critical than
that of SS since the size of a secret image is much larger than that of a secret number. Thien
and Lin [12] developed a (k, n)-SIS scheme in 2002. They modified Shamir’s polynomial-
based sharing approach straightforward on a gray-scale image with size N . The resultant
shadow size is N/k. In 2014, Chang et al. [4] proposed a multi-image sharing scheme based
on Chinese remainder theorem and Lagrange interpolation. All secret images have the same
size. Each shadow of their scheme is a matrix of the same size as one secret image, but the
value of each element in the matrix may be very large. The above-mentioned schemes only
cope with the threshold structure.

Few SIS schemes are designed under GAS called SIS-GAS. In 2001, Tsai and Chang
[14] presented a SIS-GAS scheme. In Tsai-Chang’s scheme, a secret image S is first com-
pressed into a sequence of indices I through vector quantization [10] with a certain selected
codebook C. I is encrypted via an encryption-key K and put in public by the dealer. Then,
Benaloh-Leich’s SS-GAS scheme [2] is applied to codebook C and key K , respectively.
The size of C is smaller than that of S, and each component of a codevector in C is regarded
as a separate secret number. The size of each produced shadow is thus smaller than that of
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S. However, the reconstructed secret image is a lossy version of S. In 2010, Lin et al. [9]
proposed a scheme to share multiple secret images for GAS. For each secret image, each
qualified set has a corresponding seed. Through this seed, the secret image is encrypted and
put in public. And the seed is encoded into several shadows; each participant will own one
shadow, such that participants in the qualified set can reconstruct the seed through the owned
shadows and use the seed and the encrypted public image to reconstruct the secret image.
Note that the encrypted image is put in public in above two schemes. Any storage accident
or malicious damage on the encrypted image may destroy the whole sharing system.

The goal of this paper focuses on the design of SIS schemes under GAS such that a secret
image can be perfectly (losslessly) reconstructed without any extra public information. In
addition, the related researches for SIS-GAS only consider sharing secret for each qualified
set in the encoding phase. We propose three SIS-GAS schemes by considering qualified
and forbidden sets. The comparisons of their performances in terms of the shadow size
are also provided. The rest of this paper is organized as follows. Section 2 surveys related
works. Section 3 describes our proposed schemes. Section 4 analyzes the shadow sizes of
our methods. Some concluding remarks are made in Section 5.

2 Related work

An SIS schemes devised by Thieh-Lin [12] and an extended SIS scheme based on Shamir
[11] are described in Section 2.1, these two schemes are both threshold scheme. Section 2.2
gives the definitions regarding GAS. Then, we briefly introduce two SS schemes for GAS:
Ito et al.’s multiple assignment scheme [7] in Section 2.3 and Benaloh and Leich’s method
[2] in Section 2.4.

2.1 Shamir’s (k, n)-SIS scheme and Thieh-Lin’s (k, n)-SIS scheme

Shamir’s (k, n)-SIS scheme [12] is based on Shamir’s (k, n)-TSS scheme [11]. Consider a
gray-scale secret image S with sizeN and n predefined keys x1, x2, . . . , xn for n participants
1, 2, ..., n. The secret image S is encoded into n shadow images for n participants by the
following polynomial function with k − 1 degrees:

f (x) = a0 + a1x + a2x
2 + . . . + ak−1x

k−1 mod q, (1)

Here, q = 251, a0 is the value of the j -th secret pixel and a1, a2, . . . , ak−1 are random
numbers. The dealer determines n distinct random keys x1, x2, . . . , xn, constructs n shadows
d

j

1 , d
j

2 , . . . , d
j
n and distributes (xi, d

j
i ) to participant i.

Thieh-Lin’s (k, n)-SIS Scheme is similar to Shamir’s (k, n)-SIS Scheme, except that S

is permutated into S′, and each set of k secret pixels in S′ is assigned to the k coefficients
in (1).

The dealer constructs the shadow imageDi by collecting all d
j
i and distributes (xi ,Di) to

participant i. The size ofDi isN for Shamir’s (k, n)-SIS scheme and �N/k� for Thieh-Lin’s
(k, n)-SIS Scheme.

2.2 General access structures in secret sharing

Let P = {1, 2, . . . , n } be a finite set of participants for sharing a secret s, and 2P be the set
of all subsets in P . According to [1, 7], some GAS related definition are given as follows:
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Definition 1 Let �Q ⊆ 2P and �F ⊆ 2P , where �Q ∩ �F = ∅. The members of �Q are
referred as qualified sets and the members of �F are called forbidden sets. � = (�Q, �F )

is called a GAS of P .

Given � = (�Q, �F ) of P with regard to s, a secret sharing scheme encodes s into
shadows and distributes to participants such that all members of each A ∈ �Q together can
reconstruct s using their shadows, while those of any B ∈ �F cannot.

Definition 2 For each A ∈ �Q and any B ∈ �F , if

A′ ⊇ A ⇒ A′ ∈ �Q and B ′ ⊆ B ⇒ B ′ ∈ �F ,

then �Q is monotone increasing and �F is monotone decreasing. Consequently,
� = (�Q, �F ) is monotone.

Definition 3 If � = (�Q, �F ) is monotone and �Q ∪ �F = 2P , then � is a strong GAS.

Definition 4 �0 is termed a basis of a strong GAS �, if �0 consists of all minimal qualified
sets in �. That is,

�0 = {A ∈ �Q|B /∈ �Qf or all B ⊂ A}.

Definition 5 ZM is defined as the collection of the maximal forbidden sets in �. That is,

ZM = {B ∈ �F | B ∪ {i} ∈ �Qf or any i ∈ P \ B}.

In the remainder parts of this paper, all mentioned GASs are strong GASs for short, and
�Q and �F can be derivated by �0 (or ZM ).

2.3 Ito-SS-FGAS scheme

Ito et al. [7] proposed an SS scheme for GAS in 1987, called Ito-SS-FGAS Scheme. Given
P = {1, 2, . . . , n}, s, and a � = (�Q, �F ) with ZM = {B1, B2, . . . , Bm}, the encoding
phase contains two steps:

1. Construct m pairs of keys and shadows (x1, d1), (x2, d2), . . . , (xm, dm) for s by
Shamir’s (m, m)-TSS scheme.

2. Distribute each (xf , df ) to all participants who are not in Bf for 1 ≤ f ≤ m.

In the decoding phase, since each qualified set A �⊂ Bf for each Bf ∈ ZM, at least a
participant in A can receive (xf , df ) [7]. Thus, participants in A are able to reconstruct s by
Shamir’s (m, m)-TSS decoding scheme.

We can extend Ito-SS-FGAS Scheme to share an image. For a gray-scale secret image
S, we simply treat each pixel in S as a separate secret and encode it using Ito-SS-FGAS
Scheme. This scheme is called Ito-SIS-FGAS Scheme.

2.4 BL-SS-QGAS scheme

Benaloh and Leich [2] proposed an SS scheme for GAS in 1988, called BL-SS-QGAS
Scheme. This scheme allows an access structure to be written as a clause f ormula
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including AND and OR operators. Consider P = {1, 2, . . . , n}, s, and a � = (�Q, �F )

with �0 = {A1, A2, . . . , Ah}. This scheme translates �0 to the following clause formula

F = ((i11 ∧ i12 ∧ . . . ∧ i1m1
) ∨ ((i21 ∧ i22 ∧ . . . ∧ i2m2

)

∨ . . . ∨ ((ih1 ∧ ih2 ∧ . . . ∧ ihmh
))

where (il1 ∧ il2 ∧ . . . ∧ ilml
) is clause l and stands for the participation of all members in Al

for 1≤ l ≤ h, ilu is the u-th participant in Al for 1≤ u ≤ ml(= |Al |) and ∧ (∨) denotes the
AND (OR) operator. For instance, �0 = {1, 2, 3, 4} can be written as ((1∧ 2) ∨ (3 ∧ 4)).
The encoding phase contains two steps:

1. For each clause l, s (∈ [0, q − 1]) is encoded into ml shadows sl1 , sl2 , . . ., slml
with

s = (sl1 + sl2 + . . . + slml
) mod q.

2. The ml shadows are distributed to the corresponding ml participants in clause l for
1≤ l ≤ h. The index l is attached to each shadow for decoding.

Regarding the decoding phase, the participants in qualified set Al holding shadows sl1 ,
sl2 , . . ., slml

with the same index l can reconstruct s by simply computing s = (sl1 + sl2 +
. . . + slml

) mod q for 1≤ l ≤ h. This scheme is simple, but the total shadow size becomes
large when the sum of m1, m2, . . ., ml is large.

We can extend BL-SS-QGAS Scheme to share an image. For a gray-scale secret image
S, we simply treat each pixel in S as a separate secret and encode it using BL-SS-QGAS
Scheme. This scheme is called BL-SIS-QGAS Scheme.

3 Proposed methods

Consider a secret image S with size H × W , a set of n participants P = {1, 2, . . . , n}
and a GAS � = (�Q, �F ) with �0 = {A1, A2, . . . , Ah} and ZM = {B1, B2, . . . , Bm}.
Here, we propose three SIS-GAS schemes in the following three sub-sections. The first
one, referred to as Shamir-SIS-QGAS scheme, modifies BL-SIS-QGAS Scheme based on
Shamir’s (m, m)-SIS scheme. The second, referred to as TL-SIS-QGAS scheme, is based
on Thien-Lin’s (m, m)-SIS scheme and �0, and the last, called TL-SIS-FGAS scheme, is
based on Thien-Lin’s (m, m)-SIS scheme and ZM . The arithmetic operations apply GF(28)
in these schemes.

3.1 Shamir-SIS-QGAS scheme

The Shamir-SIS-QGAS scheme is designed as follows.

1. Assign a unique key xi for each participant i ∈ P , 1≤ xi ≤ 255.
2. For each minimal qualified set Al = {il1 , il2 , . . . , ilml

} ∈ �0, encode S into ml

shadow images Dl1 ,Dl2 , . . . , Dlml
through Shamir’s (ml,ml)-SIS scheme with keys

xil1
, xil2

, . . . , xilml
. Each shadow image has the same size as S.

3. Assign shadow image Dlu to participant ilu for 1≤ u ≤ ml . The index l with regard to
Al is distributed to participant ilu .

4. Distribute the height H and width W to each participant.
5. Merge all, say ti , shadow images held by participant i into a shadow image UDi . The

size of UDi is ti × H × W . In addition, concatenate all indices corresponding to these
ti shadow images into an index-sequence UIi with length ti for participant i.
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Note that participant i holds (a) a key xi , (b) the height H and width W of the secret
image, (c) a shadow image UDi , and (d) an index-sequence UIi .

In the decoding phase, each Al = {il1 , il2 , . . . , ilml
}∈ �0 can reveal S by the steps

below:

1. For each participant ilu in Al where 1≤ u ≤ ml , extract H and W . Then, extract index
l from UIilu

and shadow image Dlu with size H × W from UDilu
.

2. Recover S through Shamir’s (ml , ml)-SIS decoding method by using the ml shad-
ows Dl1 , Dl2 , . . . , Dlml

with the same index l and the ml corresponding keys xil1
,

xil2
, . . . , xilml

held by participants il1 , il2 , . . . , ilml
.

3.2 TL-SIS-QGAS scheme

TL-SIS-QGAS scheme is similar to Shamir-SIS-QGAS scheme, except two differences.
The first is that the secret image is encoded into shadow images directly in Shamir-SIS-
QGAS scheme, but in TL-SIS-QGAS scheme, the secret image must be transformed into
a random image before encoding for each minimal qualified set. The second is that in the
shadow image construction, Shamir-SIS-QGAS scheme uses Shamir’s (m, m)-SIS scheme,
but TL-SIS-QGAS scheme uses Thien-Lin’s (m, m)-SIS scheme. The details of the scheme
are described as follows.

1. Assign a key xi to each participant i for 1 ≤ i ≤ n, 1≤ xi ≤ 255.
2. Distribute the height H and width W to each participant.
3. Assign a seed el for each Al = {il1 , il2 , . . . , ilml

} ∈ �Q, where el is smaller than a prime
q.

4. Generate a random sequence Rl with size H × W based on el .
5. Encode the secret image S into a random image Sl by

Sl = S ⊕ Rl,

where ⊕ is XOR operator.
6. Encode Sl into shadow imagesDl1 ,Dl2 , . . . , Dlml

by Thien-Lin’s (ml ,ml)- SIS scheme,
where ml keys xil1

, xil2
, . . . , xilml

are held by participants in Al . The size of each
shadow image Dlu is �H × W/ml�.

7. Encode el into seed shadows sel1 , sel2 , . . . , selml
by Shamir’s (ml , ml)-TSS scheme

using the same ml keys in Step 6. All seed shadows are smaller than q.
8. Distribute image Dlu to participant ilu for 1≤ u ≤ ml . The index l, ml , and seed shadow

selu with regard to Al are distributed to participant ilu .
9. Merge all shadow images held by participant i into a shadow image UDi . The size of

UDi is
∑

l∈{k|i∈Ak}�H × W/ml�. Concatenate all corresponding indice l, ml and seed
shadows into an index-sequence UIi , number-sequence UNi and seed-sequence UEi ,
respectively.

To avoid forbidden set with el to guess the shapes of S, we shared el to increase the
security in Step 7.

The decoding phase is similar to that of Shamir-SIS-QGAS scheme, except that
Shamir’s (k, n)-SIS scheme is replaced by Thien-Lin’s (k, n)-SIS scheme and Sl is con-
verted to S by XOR with sequence Rl which is generated from el . Let each participant
ilu in Al = {il1 , il2 , . . . , ilml

} ∈ �0 have key xilu
, shadow image UDilu

, and three

Author's personal copy



Multimed Tools Appl

sequences UIilu
, UNilu

and UEilu
. The detail steps of the decoding phase are described as

follows.

1. For each participant ilu in Al , extract index l from UIilu
, ml from UNilu

and seed
shadow selu from UEilu

. And extract shadow image Dlu with size �H × W/ml� from
UDilu

.
2. Reconstruct Sl by using all (ml) extracted shadow images Dl1 , Dl2 , . . . , Dlml

and keys
xil1

, xil2
, . . . , xilml

through Thien-Lin’s (ml , ml)-SIS scheme.
3. Reconstruct el by using all (ml) extracted seed shadows sel1 , sel2 , . . . , selml

, and the
same keys in Step 2 via Shamir’s (ml , ml)-TSS decoding method.

4. Generate a random sequence Rl with size |Sl |(= H × W) through el .
5. Reconstruct S by applying XOR operator to Sl and Rl ,

S = Sl ⊕ Rl.

3.3 TL-SIS-FGAS scheme

TL-SIS-FGAS scheme is similar to Ito-SIS-FGAS scheme, except two differences. The first
is that the secret image is encoded into shadow images directly in Ito-SIS-FGAS scheme, but
in TL-SIS-FGAS scheme, the secret image must be transformed into a random image before
encoding. The second is that in the shadow image construction, Ito-SIS-FGAS scheme
uses Shamir’s (m, m)-SIS scheme, but TL-SIS-FGAS scheme uses Thien-Lin’s (m, m)-SIS
scheme. The detail steps are described as below.

1. Prepare a seed e and generate a random sequence R with size H × W according to e,
where e is smaller than a prime q.

2. Encode the secret image S into a random image S′ by

S′ = S ⊕ R.

3. Select m(= |ZM |) keys x1, x2, . . . , xm.
4. Encode e into seed shadows se1, se2, . . . , sem through Shamir’s (m, m)-TSS scheme

and m keys x1, x2, . . . , xm. All seed shadows are smaller than q.
5. Encode S′ into shadow images D1, D2, . . . , Dm through Thien-Lin’s (m, m)-SIS

scheme and m keys x1, x2, . . . , xm. The size of each shadow image is �H × W/m�.
6. Distribute the height H and width W ′ (= �W/m� ) to each participant.
7. For each maximum forbidden set Bf in ZM , distribute key, seed shadow and shadow

image (xf , sef , Df ) to each participant not in Bf .
8. Group all received shadow images of participant i into UDi . The size of UDi is

H × W ′
i , where W ′

i is the sum of all widths of shadow images that participant i

holds. Then, group all keys corresponding to these shadow images in UDi into a key-
sequenceUKi , and group all corresponding seed shadows into a seed-sequenceUEi for
participant i.

The decoding phase is similar to Shamir-SIS-FGAS scheme’s except replacing Shamir’s
(k, n)-SIS scheme by Thien-Lin’s (k, n)-SIS scheme, and converting the decoded image S′
into the secret image S. The detail steps are as follows.

1. For each participant ilu belonging to Al = {l1, l2, . . . , lml
}, extract H , W ′, xf , sef and

Df with size H × W ′ from UKilu
, UEilu

, and UDilu
based on the same order.

2. Collect m different triples (xf , sef , Df ).
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3. Reconstruct S′ through Thien-Lin’s (m, m)-SIS decoding method by using all x1,
x2, . . . , xm and D1, D2, . . . , Dm. And reconstruct e via Shamir’s (m,m)-TSS decoding
method by using all x1, x2, . . . , xm and se1, se2, . . . , sem.

4. Generate a random sequence R with size |S′| through e.
5. Reconstruct S by applying XOR operator to S′ and R.

4 Analysis of shadow sizes

To obtain the total shadow size for each of the aforementioned schemes, we have to find
out the sizes of (a) shadow image (UD), (b) key/key-sequence (x/UK), (c) storage for
height and width (H&W ), (d) index-sequence (UI ), (e) number-sequence (UN ) and (f)
seed-sequence (UE) for each of them. The total shadow size is thus the summation of (a)-
(f) correspondingly. Here, bit is the basic unit of total shadow size. We summarize the sizes
of (a)–(f) for Ito-SIS-FGAS, BL-SIS-QGAS, and the proposed three schemes in Tables 1
and 2. Note that the sizes of (a), (c)-(f) between BL-SIS-QGAS and Shamir-SIS-QGAS are
the same, but the size of (b) in BL-SIS-QGAS is 0.

The features of Ito-SIS-FGAS, BL-SIS-QGAS, and the proposed three schemes in terms
of shadow sizes will be further analyzed in the following sub-sections. The qualified set
based schemes, i.e., BL-SIS-QGAS, Shamir-SIS-QGAS and TL-SIS-QGAS, and the forbid-
den set based ones, i.e., Ito-SIS-FGAS and TL-SIS-FGAS will be compared, respectively,
in Section 4.1. The two schemes with smaller sizes, i.e., TL-SIS-FGAS and TL-SIS-QGAS,
will be further examined in Section 4.2.

4.1 Comparisons between Shamir based and TL based schemes

Based on the information in Tables 1 and 2, we shall further prove two significant findings:

(1) In qualified set based schemes, the total shadow size of Shamir-SIS-QGAS is larger
than or equal to that of TL-SIS-QGAS if 8 ×H × W ≥ |P | × (�log2 P � + �log2 q�).

(2) In forbidden set based schemes, the total shadow size of Ito-SIS-FGAS is larger than
or equal to that of TL-SIS-FGAS if and only if |ZM | ≥ 2 and H × W ≥ �log2 q�/4.

Let BLQ, IT F , SQ, T Q and T F denote the total shadow sizes of BL-SIS-QGAS, Ito-
SIS-FGAS, Shamir-SIS-QGAS, TL-SIS-QGAS and TL-SIS-FGAS schemes, respectively.
The aforementioned two findings are formally proved as two following theorems.

Theorem 1 If 8 × H × W ≥ |P | × (�log2 P � + �log2 q�), then SQ ≥ T Q.

Table 1 Shadow size analysis for BL-SIS-QGAS, Shamir-SIS-QGAS and Ito-SIS-FGAS

Scheme BL-SIS-QGAS Shamir-SIS-QGAS Ito-SIS-FGAS

(a) UD 8 × H × W × ∑|�0|
l=1 |Al | 8 × H × W × ∑|�0|

l=1 |Al | 8 × H × W × ∑|ZM |
f =1 (|P | − |Bf |)

(b) x/UK 0 8 × |P | 8 × ∑|ZM |
f =1 (|P | − |Bf |)

(c) H&W |P | × (�log2 H� + �log2 W�) |P | × (�log2 H� + �log2 W�) |P | × (�log2 H� + �log2 W�)
(d) UI �log2 |�0|� × ∑|�0|

l=1 |Al | �log2 |�0|� × ∑|�0|
l=1 |Al | 0

(e) UN 0 0 0

(f) UE 0 0 0
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Table 2 Shadow size analysis for TL-SIS-QGAS and TL-SIS-FGAS

Scheme TL-SIS-QGAS TL-SIS-FGAS

(a) UD
∑|�0|

l=1

(
|Al | × 8×H×W

|Al |
) ⌈

8×H×W
|ZM |

⌉
× ∑|ZM |

f =1 (|P | − |Bf |)
= 8 × H × W × |�0|

(b) x/UK 8 × |P | 8 × ∑|ZM |
f =1 (|P | − |Bf |)

(c) H&W |P | × (�log2 H� + �log2 W�) |P | ×
(
�log2 H� + �log2 W

|ZM | �
)

(d) UI �log2 |�0|� × ∑|�0|
l=1 |Al | 0

(e) UN �log2 P � × ∑|�0|
l=1 |Al | 0

(f)UE �log2 q� × ∑|�0|
l=1 |Al | �log2 q� × ∑|ZM |

f =1 (|P | − |Bf |)

Proof From Tables 1 and 2, we have

SQ = 8 × H × W ×
|�0|∑

l=1

|Al | + 8 × |P | + |P | × (�log2 H� + �log2 W�)

+�log2 |�0|� ×
|�0|∑

l=1

|Al |,

T Q = 8 × H × W × |�0| + 8 × |P | + |P | × (�log2 H� + �log2 W�)

+�log2 |�0|� ×
|�0|∑

l=1

|Al | + �log2 P � ×
|�0|∑

l=1

|Al | + �log2 q� ×
|�0|∑

l=1

|Al |.

After subtracting T Q from SQ, we obtain

SQ − T Q = 8 × H × W ×
((∑|�0|

l=1
|Al |

)

− |�0|
)

−(�log2 P � + �log2 q�) ×
∑|�0|

l=1
|Al |. (2)

Since |Al | ≥ 2 for 1 ≤ l ≤ |�0|. This implies
∑|�0|

l=1
|Al | − |�0| ≥ 2 × |�0| − |�0| = |�0|. (3)

By (2) and (3), we have

SQ − T Q ≥ (8 × H × W × |�0|) − (�log2 P � + �log2 q�) ×
|�0|∑

l=1

|Al |.

Since |�0| = ∑|�0|
l=11, we obtain

SQ − T Q ≥
|�0|∑

l=1

(8 × H × W − (�log2 P � + �log2 q�) × |Al |)

≥
|�0|∑

l=1

(8 × H × W − (�log2 P � + �log2 q�) × |P |). (4)

If 8 × H × W ≥ |P | × (�log2 P � + �log2 q�), by (4), we have SQ − T Q ≥ 0. The proof
is completed.
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Theorem 2 If |ZM | ≥ 2 and H × W ≥ �log2 q�/4 , then IT F ≥ T F .

Proof From Tables 1 and 2, we have

IT F = 8 × H × W ×
|ZM |∑

f =1

(|P | − |Bf |) + 8 ×
|ZM |∑

f =1

(|P | − |Bf |)

+|P | × (�log2 H� + �log2 W�),

T F =
⌈
8 × H × W

|ZM |
⌉

×
|ZM |∑

f =1

(|P | − |Bf |) + (8 + �log2 q�) ×
|ZM |∑

f =1

(|P | − |Bf |)

+|P | ×
(

�log2 H� + �log2
W

|ZM | �
)

.

Therefore

IT F − T F =
(

8 × H × W −
⌈
8 × H × W

|ZM |
⌉

− �log2 q�
)

×
|ZM |∑

f =1

(|P | − |Bf |)

+|P | ×
(

�log2 W� −
⌈

log2
W

|ZM |
⌉)

. (5)

If |ZM | ≥ 2 and H × W ≥ �log2 q�/4, then

8 × H × W −
⌈
8 × H × W

|ZM |
⌉

− �log2 q�
≥ 4 × H × W − �log2 q� ≥ 0 (6)

Note that

�log2 W� −
⌈

log2
W

|ZM |
⌉

≥ 0, (7)

|P | > 0, (8)

and

|ZM |∑

f =1

(|P | − |Bf |) > 0. (9)

By (5) to (9), we have IT F − T F ≥ 0. The proof is completed.

Note that in general, H × W (the size of the secret image) is much larger than �log2 q�
(the length of the seed) and |P | (the number of participant), respectively. For example, to
encrypt a 256 × 256 secret image among 16 participants by using seeds with 1024 bits, we
have 8 ×H ×W(= 8×256×256) > |P |×(�log2 P �+�log2 q�)(= 16×(4+1024)). This
indicates that the condition 8×H ×W ≥ |P |×(�log2 P �+�log2 q�) in Theorem 1 is easily
satisfied in practical SIS. In addition, H × W(= 256× 256) ≥ �log2 q�/4(= 1024/4), this
implies that H × W ≥ �log2 q�/4 in Theorem 2 is easily satisfied, too. Thus, according to
Theorems 1 and 2, we realize that TL-SIS-FGAS and TL-SIS-QGAS will generate smaller
shadow sizes for most circumstances among the five schemes.
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4.2 Comparison between TL-SIS-QGAS and TL-SIS-FGAS

To explore the performances of TL-SIS-QGAS and TL-SIS-FGAS in terms of shadow size,
we compare the sizes of their shadow images (UDs) in the beginning and then their total
shadow sizes. From Table 1, we have

UDT Q = 8 × H × W × |�0|
and

UDT F =
⌈
8 × H × W

|ZM |
⌉

×
|ZM |∑

f =1

(|P | − |Bf |).

To judge which is smaller, we simply compare |�0| against 1
|ZM | × ∑|ZM |

f =1 (|P | − |Bf |). We
start from examining the relationship between any Bf (∈ ZM) and �0 for 1≤ f ≤ |ZM |.

Lemma 1 Given any pair (Bf , af,t ) where Bf ∈ ZM and af,t ∈ P \Bf for 1 ≤ f ≤ |ZM |
and 1 ≤ t ≤ |P \ Bf |, there exists Al ∈ �0 such that Al ⊆ Bf ∪ {af,t } and af,t ∈ Al for
1 ≤ l ≤ |�0|.

Proof By the definition of ZM , we have Bf ∪ {af,t } ∈ �Q. Regarding the relationship
between Bf ∪{af,t } and �0, there are two possibilities: Bf ∪{af,t } ∈ �0 or Bf ∪{af,t } /∈ �0.
If Bf ∪ {af,t } ∈ �0, the proof is completed. If Bf ∪ {af,t } /∈ �0, by the definition of �0
there must exist Al ∈ �0 such that Al ⊂ Bf ∪ {af,t }. Further, if {af,t } /∈ Al , then Al ⊂ Bf ,
this implies Al is a forbidden set and results in a contradiction (against Al ∈ �0). Therefore,
{af,t } ∈ Al .

Example 1 shows what Lemma 1 means.

Example 1 For P = {1, 2, 3, 4}, consider the following GAS �1 specified by �0 =
{A1, A2, A3} = {{1, 2}, {1, 3}, {1, 4}} and ZM = {B1, B2} = {{1}, {2, 3, 4}}. Consider B1,
we have P \ B1 = {a1,1, a1,2, a1,3} = {2, 3, 4}. For pair (B1, a1,1), there exists A1 ⊆
B1 ∪ {a1,1} = {1, 2}. For (B1, a1,2) and (B1, a1,3), there exists A2 ⊆ B1 ∪ {a1,2} = {1, 3},
and A3 ⊆ B1 ∪ {a1,3} = {1, 4}, respectively. Consider B2, we have P \ B2 = {a2,1} = {1}.
For pair (B2, a2,1), there exists A1 ⊆ B2 ∪ {a2,1} = {1, 2, 3, 4}. Note that there also exist
A2, A3 ⊆ B2 ∪ {a2,1} = {1, 2, 3, 4}.

Lemma 2 For two distinct pairs (Bf , af,t ) and (Bf , af,t ′) where Bf ∈ ZM and
af,t , af,t ′ ∈ P \ Bf for 1 ≤ f ≤ |ZM | and 1 ≤ t (t ′) ≤ |P \ Bf |, there exists Al ∈ �0 and
Al′ ∈ �0 such that Al ⊆ Bf ∪ {af,t } and Al′ ⊆ Bf ∪ {af,t ′ } where Al �= Al′ .

Proof By Lemma 1, there exists Al ∈ �0 for (Bf , af,t ) such that Al ⊆ Bf ∪ {af,t } and
af,t ∈ Al . Meanwhile, we also haveAl′ ∈ �0 for (Bf , af,t ′) such thatAl′ ⊆ Bf ∪{af,t ′ } and
af,t ′ ∈ Al′ . Suppose af,t ′ ∈ Al , since Al ⊆ Bf ∪{af,t }, af,t �= af,t ′ this implies af,t ′ ∈ Bf ,
a contradiction. This means af,t ′ /∈ Al and Al �= Al′ .

Lemma 2 addresses that distinct Al,Al′ ∈ �0 exist for distinct (Bf , af,t ) and (Bf , af,t ′)
such that Al ⊆ Bf ∪ {af,t } and Al′ ⊆ Bf ∪ {af,t ′ } for any af,t �= af,t ′ ∈ P \ Bf . Below
show some illustrating instances.
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Example 2 Assume that P = {1, 2, 3, 4}, consider the following GAS �2 specified by
�0 = {A1, A2, A3, A4} = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}} and ZM = {B1, B2, B3, B4} =
{{1}, {2, 3}, {2, 4}, {3, 4}}. Consider B1, we have P \ B1 = {a1,1, a1,2, a1,3} = {2, 3, 4}.
For (B1, a1,1) and (B1, a1,2), there exist A1 ⊆ B1 ∪ {a1,1} = {1, 2} and A2 ⊆ B1 ∪
{a1,2} = {1, 3} where a1,1 �= a1,2 and A1 �= A2. For (B1, a1,3) , these also exists A3 ⊆
B1 ∪ {a1,3} = {1, 4} where a1,3 �= a1,1(a1,3 �= a1,2) and A3 �= A1(A3 �= A2). Further,
consider B2, we have P \ B2 = {a2,1, a2,2} = {1, 4}. For (B2, a2,1) and (B2, a2,2), there
exist A1, A2 ⊆ B2 ∪ {a2,1} = {1, 2, 3} and A4 ⊆ B2 ∪ {a2,2} = {2, 3, 4} where a2,1 �= a2,2
and A1(A2) �= A4. The similar results can be deduced from B3 and B4.

Theorem 3 For each Bf ∈ ZM , |P | − |Bf | ≤ |�0|.

Proof For any given Bf ∈ ZM , let mf denote the number of elements in P \ Bf and
P \ Bf = {af,1, af,2, . . . , af,mf

}. From Lemma 2, we know that there exists mf distinct
Alt ∈ �0 such that Alt ⊆ Bf ∪ {af,t } and af,t ∈ Alt . This implies mf ≤ |�0|, that is,
|P | − |Bf | ≤ |�0|.

Example 3 For �1 in Example 1, we have |P | − |B1| = 3 = |�0| and |P | − |B2|(= 1) <

|�0|(= 3). Regarding �2 in Example 2, |P | − |B1|(= 3) < |�0|(= 4), |P | − |B2| =
|P | − |B3| = |P | − |B4|(= 2) < |�0|(= 4).

By Theorem 3, we can easily get Corollary 1.

Corollary 1 1
|ZM | × ∑|ZM |

f =1 (|P | − |Bf |) ≤ |�0|.

In fact, 1
|ZM | × ∑|ZM |

f =1 (|P | − |Bf |) = |�0| holds if and only if |P | − |Bf | = |�0| for
each Bf ∈ ZM , otherwise, 1

|ZM | × ∑|ZM |
f =1 (|P | − |Bf |) < |�0|. In the following, we shall

further point out that |P | − |Bf | = |�0| for each Bf ∈ ZM is true only under rather strict
condition. Consider only Bf ∈ ZM with P \ Bf = {af,1, af,2, . . . , af,mf

}. Let
�Bf

= {Bf ∪ {af,1}, Bf ∪ {af,2}, . . . , Bf ∪ {af,mf
}}

and

�Bf
= {A ∈ �0 | A ⊆ Bf ∪ {af,t } where af,t ∈ P \ Bf }.

It is not hard to see |�Bf
| ≤ |�Bf

| ≤ |�0|. Note that there may be more than one
A ∈ �0 satisfying A ⊆ Bf ∪ {af,t } for a given pair (Bf , af,t ). The only condition for
|P | − |Bf | = |�0| for each Bf ∈ ZM becomes

|�Bf
| = |�Bf

| = |�0| = |P | − |Bf |,
this means �Bf

= �0 for each Bf ∈ ZM . Corollary 2 is an immediate consequence from
our discussion.

Corollary 2 If |�Bf
| = |�Bf

| = |�0| for each Bf ∈ ZM , 1
|ZM | × ∑|ZM |

f =1 (|P | − |Bf |) =
|�0|.

Example 4 Assume that P = {1, 2, 3, 4, 5} with a GAS �3 specified by �0 = {A1, A2} =
{{1, 2, 3}, {4, 5}} and ZM = {B1, B2, B3, B4, B5, B6} = {{1, 2, 4}, {1, 2, 5}, {1, 3, 4},
{1, 3, 5}, {2, 3, 4}, {2, 3, 5}}. We have P \ B1 = {3, 5} (= {a1,1, a1,2}), �B1 = {{1, 2, 3, 4},
{1, 2, 4, 5}} and �B1 = {A1, A2} such that |�B1 | = |�B1 | = |�0| = 2. In addition,
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P \B2 = {3, 4} = ({a2,1, a2,2}), �B2 = {{1, 2, 3, 5}, {1, 2, 4, 5}} and �B2 = {A1, A2} such
that |�B2 | = |�B2 | = |�0| = 2. The similar results can be deduced from B3 to B6.

Consider �1 again. We have �B1 = {{1, 2}, {1, 3}, {1, 4}} and �B1 = {A1, A2, A3} such
that |�B1 | = |�B1 | = |�0| = 3; and �B2 = {{1, 2, 3, 4}} and �B2 = {A1, A2, A3} such
that |�B2 | (= 1) < |�B2 | = |�0| (= 3).

Regarding �2, �B1 = {{1, 2}, {1, 3}, {1, 4}} and �B1 = {A1, A2, A3} such that |�B1 | =
|�B1 | (= 3) < |�0| (= 4); and �B2 = {{1, 2, 3}, {2, 3, 4}} and �B2 = {A1, A2, A4}
such that |�B2 | (= 2) < |�B2 | (= 3) < |�0| (= 4); �B3 = {{1, 2, 4}, {2, 3, 4}} and
�B3 = {A1, A3, A4} such that |�B3 | (= 2) < |�B2 | (= 3) < |�0| (= 4); and �B4 =
{{1, 3, 4}, {2, 3, 4}}, and �B4 = {A2, A3, A4} such that |�B4 | (= 2) < |�B2 | (= 3) < |�0|
(= 4).

Corollary 3 If all Ai ∩ Ai = ∅ where Ai,Aj ∈ �0, then |�Bf
| = |�Bf

| = |�0| for each
Bf ∈ ZM .

Proof (a) To prove |�Bf
| = |�Bf

| : For any Bf ∈ ZM and af,t ∈ P \ Bf , suppose there
exist A1 �= A2 ∈ �0 such that A1 and A2 ⊆ Bf ∪ af,t . Since af,t ∈ A1 and af,t ∈ A2, this
imply A1 ∩ A2 �= ∅ , contradiction. This implies |�Bf

| = |�Bf
|.

(b) To prove |�0| ≤ |�Bf
| : For any C ∈ �0, , there exists af,t ∈ P \ Bf , such that

af,t ∈ C. Let A ∈ �0, A ⊆ Bf ∪ af,t . Since af,t ∈ C ∩ A �= ∅, this implies C = A. Since
C ∈ �Bf

, this means |�0| ≤ |�Bf
|.

By (a) and (b), the proof is complete.

Finally, we compare the total shadow sizes of TL-SIS-QGAS and TL-SIS-FGAS
schemes, which are denoted as T Q and T F , respectively.

Theorem 4 T F < T Q only if (λ1 = 0 and λ2 > 0) or (λ1 > 0 and −λ2 < λ1 × H × W)

where λ1 = 8×(|�0|− 1
ZM

×∑|ZM |
f =1 (|P |−|Bf |)) and λ2 = |P |×(�log2 W�−�log2 W

|ZM | �+
8)+(�log2 |�0|�+�log2 P �+�log2 q�)×∑|�0|

l=1 |Al |−(8+�log2 q�×∑|ZM |
f =1 (|P |−|Bf |)).

Proof From Table 2, we have

T Q = 8 × H × W × |�0| + |P | × (�log2 H� + �log2 W� + 8)

+(�log2 |�0|� + �log2 P � + �log2 q�) ×
|�0|∑

l=1

|Al |,

T F =
⌈
8 × H × W

|ZM |
⌉

×
|ZM |∑

f =1

(|P | − |Bf |) + (8 + �log2 q�) ×
|ZM |∑

f =1

(|P | − |Bf |)

+|P | ×
(

�log2 H� +
⌈

log2
W

|ZM |
⌉)

.

Then

T Q − T F = 8 × H × W ×
⎛

⎝|�0| − 1

|ZM | ×
|ZM |∑

f =1

(|P | − |Bf |)
⎞

⎠

+|P | ×
(

�log2 W� −
⌈

log2
W

|ZM |
⌉

+ 8

)
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Table 3 The total shadow sizes of �1, �2 and �3 for our schemes

BLQ IT F SQ T Q T F

�1 3145804 2097248 3145836 1579128 1052764

�2 4718674 4718728 4718706 2106500 1188992

�3 2621533 6291632 2621565 1053836 1061030

+(�log2 |�0|� + �log2 P � + �log2 q�) ×
|�0|∑

l=1

|Al |

−(8 + �log2 q�) ×
|ZM |∑

f =1

(|P | − |Bf |)

= λ1 × H × W + λ2.

By Corollary 1, we have λ1 = 8 × (|�0| − 1
ZM

× ∑|ZM |
f =1 (|P | − |Bf |)) ≥ 0. There are

two cases for λ1 ≥ 0 : (1) λ1 = 0 and (2) λ1 > 0. If λ1 = 0 and λ2 > 0, T Q − T F > 0;
otherwise, if λ1 > 0 and −λ2 < λ1 ×H ×W , then T Q−T F > 0. The proof is completed.

Now, we give an example to summarize the above Theorems and Corollaries.

Example 5 Consider the aforementioned access structures �1, �2 and �3 in Examples 1,
2, and 4, respectively. We share a 256 × 256 secret image (S) by using seeds with 1024
bits (�log2 q� = 1024) for five schemes. Let BLQi, IT Fi, SQi, T Qi and T Fi denote the
total shadow sizes of BL-SIS-QGAS, Ito-SIS-FGAS, Shamir-SIS-QGAS, TL-SIS-QGAS
and TL-SIS-FGAS schemes for �i, respectively. We can use the formula in Tables 1 and 2
to calculate all total shadow sizes as shown in Table 3.

Take SQ1 as an example. From Table 1, we have SQ1 = (8 × H × W × ∑|�0|
l=1 |Al |) +

(8×|P |)+(|P |×(�log2 H�+�log2 W�))+(�log2 |�0|�×∑|�0|
l=1 |Al |), and from Example 1,

we have |P | = 4, |�0| = 3,
∑|�0|

l=1 |Al | = 6. Thus, we can compute SQ1 = 3145728+ 32+
64 + 12 = 3145836.

First, we obtain T Qi < SQi from Table 3, which conforms with Theorem 1, for 1≤ i ≤
3, since the condition 8 × H × W > (�log2 P � + �log2 q�) × |P | is satisfied. Second, we
find out that T Fi < IT Fi conforms with Theorem 2 owing to |ZM | ≥ 2 and H × W >

�log2 q�/4. Third, the relation between T F and T Q (i.e., T F1 < T Q1 and T F2 < T Q2;
but T F3 > T Q3) also follows Theorem 4. Note that condition λ1 > 0 and −λ2 < λ1 ×
H × W are met for both �1 and �2, thus T F1 < T Q1 and T F2 < T Q2. For �3, λ1 = 0
but λ2 < 0, thus T F3 > T Q3.

5 Concluding remarks

In this paper, three schemes to deal with the SIS for GASs are designed. Compare with
references [14] and [9], our proposed schemes have advantages of lossless result of
reconstruction image, no public message needed in decoding phase, and both qualified and
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forbidden sets in access structure are considered in encoding phase. Some remarks of our
schemes are: (a) The total shadow sizes of the proposed two schemes TL-SIS-QGAS and
TL-SIS-FGAS are smaller than those of BL-SIS-QGAS, Shamir-SIS-QGAS, and Ito-SIS-
FGAS in most of the access structures, since the conditions in Theorems 1 and 2 are easily
satisfied; (b) UD in TL-SIS-FGAS scheme is smaller than that in TL-SIS-QGAS scheme;
(c) The dealer may compute the sizes of these schemes in advance to choose the one
producing the smallest shadow size.

As to the security of the three proposed schemes, we only need to prove that any
forbidden set cannot reconstruct the secret image. In Shamir-SIS-QGAS Scheme and TL-
SIS-QGAS Scheme, we apply Shamir’s (m, m)-SIS (or Thien-Lin’s (m, m)-SIS) scheme
to each minimal qualified set to do secret sharing. Thus, the only way to reconstruct
the secret image is using one of the minimal qualified sets. Since any forbidden set F

cannot contain a minimal qualified set, this means that F cannot reconstruct the secret
image. In TL-SIS-FGAS Scheme, if the number of the maximum forbidden sets is m,
the secret image is encoded into m shadows by Thien-Lin’s (m, m)-SIS scheme, then any
participant in a maximum forbidden set will not own a certain shadow. Since any forbid-
den set F should be a subset of a certain maximum forbidden set, any participant in F

will not own the corresponding shadow. This means that F cannot reconstruct the secret
image.
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